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SUMMARY

A boundary conforming two-dimensional structured grid for the irregular domain of the world’s ocean
is generated numerically using differential equation techniques. It is calculated using block structured
methods which allow the inclusion of all major bodies of water including seas and basins, and which
preserve slope continuity of the co-ordinate lines across the global domain. The block structure is coupled
with an innovative blown-up cube model of the Earth which permits all areas of the global ocean to be
modeled with the same resolution, eliminating problems associated with polar singularities. The grid is
generated on the curved surface of the Earth (rather than the longitude–latitude plane) by employing the
Beltrami operator instead of the standard Laplacian operator. Application of the grid to a steady state
heat conduction problem shows the relative computational accuracy and the potential to resolve the
complex, smaller scale oceanographic phenomena of great importance to global circulation studies.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The oceans, with their irregular coastlines and bathymetry, present a unique challenge to
numerical modeling. Global ocean general circulation models (OGCMs), which numerically
solve the Navier–Stokes equations, were pioneered by Bryan [1] of the Geophysical Fluids
Dynamics Laboratory. The Bryan model, updated for vector machines by the late Cox [2] is
a widely used OGCM for climate studies. The model uses a simple Cartesian longitude–lati-
tude grid. Resolutions of the OGCM range from 5° longitude×4° latitude [3] to 0.5×0.5° [4].

There are several problems with a Cartesian longitude–latitude grid. The coastlines are
represented as zigzag or sawtooth boundaries, which can introduce unrealistic convergences or
divergences when boundary conditions are applied. Transforming the real world domain into
rectangular cells of either land or ocean often results in narrow flow-through regions either
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being cut off, since cells containing these ocean flow-though regions are mostly land, or
included only if they are as wide as a grid spacing. An example of this latter problem is Drakes
Passage below South America, which is arbitrarily enlarged in low resolution OGCMs but
crucial to the circulation of the world’s oceans. Thin strips of land such as sections of Central
America and Indonesia introduce the opposite problem, whereby independent oceans are
unrealistically connected. In order to accommodate these difficulties, cells are often changed
from land to ocean (to correct flow-through) and vice-versa (to cut off independent oceans)
leading to unfair representation of the area ratio of land versus ocean in a single cell, and
highly inaccurate locations of coastal boundaries.

Other major difficulties with a longitude–latitude grid also exist: sufficient resolution for
strong regional currents such as the western boundary intensification [5,6] is difficult to
accomplish without wasting resolution in the relatively quiescent ocean interior; grid cell areas
are non-uniform, resulting in excessive resolution near the poles.

Although a considerable number of numerical simulations have been performed on local
domains around the globe, relatively few have been done with numerically generated grids.
Stretched grids have been generated for coastal modeling [7] and composite grids have been
developed for irregular ocean basins [8]. Other non-uniform mesh procedures such as nested
grids [9] and patching techniques [10] have been examined. The most common irregular grid
ocean simulation is probably the analysis of the North Atlantic circulation. Haidvogel et al.
[11] presented an orthogonal curvilinear grid for analyzing the dynamics of the coastal
transition zone, and it was Haidvogel’s contribution in Adams et al. [12] and Fukumori et al.
[13] which presented similar conformal grids for analyzing wind driven circulation in the North
Atlantic. A number of ongoing research projects are trying to marry grid generation to global
ocean circulation simulations. For example, stretched grids are being tested at Los Alamos
National Laboratory (J. Dukowicz, personal communication), as are composite grids at Sandia
National Laboratory [14] and hexagonal grids at Colorado State (D. Randall, personal
communication). However, most currently existing OGCMs use simple Cartesian longitude–
latitude grids (or some variation thereof) which give rise to the aforementioned problems.

In an attempt to circumvent these problems, an irregular, boundary conforming, two-dimen-
sional structured grid is developed for global ocean simulations (with the intention of
eventually coupling it to an atmospheric GCM) in an effort to show that at least the ocean
component of a coupled GCM can be run more accurately with an ability to increase
resolution when required, to alleviate the wasted high resolution and various numerical
difficulties at the poles, and to use exact coastal values at each of the fixed grid point
boundaries. This last point cannot be overemphasized: boundary currents are extremely
important and can never be modeled accurately in low resolution models if sawtooth
boundaries are employed. The boundary conforming grid utilizes exact coastal locations and,
moreover, generates grid lines which follow the contours of the boundary allowing more
accurate simulation of regions such as the Gulf Stream and the Kuroshio Current.

This paper presents a new global grid which will be substituted for the Cartesian longitude–
latitude grid currently used in the Bryan–Cox ocean circulation model [1,15,16]. Section 2
describes how the new grid can be numerically generated using differential equation tech-
niques, specifically, elliptic partial differential equations (PDE’s). A block structure approach
[17,18] is introduced, which allows highly complex two-dimensional (and three-dimensional)
domains to be divided into subregions (often referred to as blocks), each of which admits an
independent local co-ordinate system. The blocks are connected after each iteration. A method
to treat floating boundaries and resulting weak singularities is also described in Section 2.
Section 3 follows the development of the boundary conforming numerically generated grid and
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introduces a blown-up cube model of the Earth, which allows all ocean domains to be modeled
with the same resolution. The governing equations for spherical surface grid generation are
also presented. The grid is tested by solving a heat conduction problem in both local and
global domains and the process by which this simulation is done using an irregular structured
grid is described in Section 4. Section 5 discusses possible improvements to the grid and
applications to future global ocean circulation studies.

In order to motivate the following work and subsequent articles describing the development
of this new global ocean model, Plate 1 is introduced as an example of the capability of an
irregular grid approach to ocean modeling. The governing equations for ocean circulation have
been transformed to computational space and the dynamics have been solved using a
streamfunction formulation. This figure shows the flow resulting from an annual mean wind
stress forced at the surface along with a specified temperature and salinity field. The model has
16 layers and a variable bathymetry. This new ocean model, the resulting solutions and
comparisons with Cartesian model solutions will be described in subsequent articles. Here, the
focus is on the generation of an irregular grid which eliminates the disadvantages of Cartesian
grids cited above.

2. FUNDAMENTALS

An arbitrary concave region can be mapped onto a rectangle. If the generation of a boundary
conforming grid within this arbitrary region is required (meaning that one co-ordinate will be
constant along each segment of the physical boundary curve) differential equation methods
can be used, exploiting the properties of the solution of the grid generating equation in
producing the mesh. The grids presented herein are generated using elliptic systems, specifi-
cally, Laplace’s equation. They have various favorable properties, such as inherent smooth-
ness, non-propagation of boundary slope discontinuities into the field, and non-overlap of grid
lines for any configuration. Poisson’s equation includes a forcing term which allows the
positioning of the grid points in physical space to be controlled and manipulated with ease.
The Laplace and Poisson equations have been extensively used for this purpose and are well
documented [19,20].

Consider the arbitrary physical region in Cartesian co-ordinates xi, {i=1, 2, 3} to be
mapped to computational curvilinear co-ordinates j i, {i=1, 2, 3}. The procedure transforms
from the physical domain to the computational domain, where the mapping is controlled by
a partial differential equation. This mapping is constructed by specifying the desired grid
points xi, {i=1, 2, 3} on the boundary of the physical domain.

Partial derivatives with respect to Cartesian co-ordinates xi are related to partial derivatives
with respect to curvilinear co-ordinates j i by

Axi
= %

3

j=1

Aj j(a j)i , (1a)

or equivalently

A
j i= %

3

j=1

Axj
(ai)j , (1b)

where ai=rj i (r= (x1, x2, x3)) is the covariant base vector and ai=9j i is the contravariant
base vector of the curvilinear co-ordinate system. General arc length increments depend on the
covariant metric tensors given by
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gij=ai ·aj=gji. (2)

The Jacobian 
g of the transformation is given by the triple scalar product


g= [det�gij �]1/2=a1 · (a2×a3). (3)

The contravariant base vectors may be written in terms of the covariant base vectors as

ai=9j i=
1


g
(aj×ak) (4)

with (i, j, k) cyclic. Contravariant metric tensors are expressed as

gij=ai ·a j=g ji, (5)

and are related to covariant metric tensors by the expression

gil=
1
g

(gjmgkn−gjngkm), (6)

where i=1, 2, 3; l=1, 2, 3 with (i, j, k) and (l, m, n) both cyclic.
The grids discussed in this paper are generated using elliptic equations. The distribution of

points on the interior of the physical domain is determined by the general Poisson type system

92j i=Pi i=1, 2, 3, (7)

where Pi controls the spacing and orientation of the co-ordinate lines. This system must be
transformed to computational space by interchanging the roles of the dependent and indepen-
dent variables. Using the above relations, the non-conservative form of the Laplacian operator
can be written

92A= %
3

i=1

%
3

j=1

ai ·a jA
j ij j+ %

3

i=1

%
3

j=1

ai · (a j)
j iAj j. (8)

Since 92j l=9 · (9j l)=9 ·al=�i=1
3 ai · (al)j i, replacing A with r= (x1, x2, x3), and using Equa-

tions (5) and (7) gives

%
3

i=1

%
3

j=1

gijr
j ij j+ %

3

k=1

Pkr
j k=92r=0, (9)

which, in practice, is the elliptic system of equations which is solved for x1, x2, x3 in terms of
the curvilinear co-ordinates j i.

In two dimensions, x3 is the direction of invariance and let j3=x3. Henceforth, when
referring to two dimensions, the notation will be x=x1, y=x2, j=j1, h=j2. It follows that
for plane grid generation the distribution of points on the interior is then determined by
solving

jxx+jyy=P(j, h), (10a)

hxx+hyy=Q(j, h), (10b)

where P=P1 and Q=P2. This yields the following elliptic system:

g22xjj−2g12xjh+g11xhh= −g(Pxj+Qxh), (11a)

g22yjj−2g12yjh+g11yhh= −g(Pyj+Qyh), (11b)

where
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g11=xj
2 +yj

2, (12a)

g12=xjxh+yjyh, (12b)

g22=xh
2 +yh

2, (12c)


g=xjyh−xhyj. (13)

Using centered finite difference approximations for these derivatives allows the use of a simple
SOR iteration procedure to solve for all interior (x, y) values.

Our arbitrary region can be regarded as a single block. Consider now a highly irregular
physical region with islands and convex boundaries. This domain can be segmented into
subregions, each bounded by four generally curved sides, within each of which an independent
co-ordinate system can be prescribed. The global co-ordinate system encompassing all subre-
gions (i.e. the entire physical domain) is formed by combining all subregions and linking all
block boundaries. A simple example of block structure is given in Figure 1(a). The physical
domain has been divided into two simple blocks. Each is mapped onto an associated
rectangular block in computational space. The common boundary between the two regions is
unphysical in the sense that, unlike a fixed boundary segment, it is free to move like other
co-ordinate lines. Consequently, it is termed a floating boundary and if treated correctly
cannot be differentiated between other interior co-ordinate lines composing the resulting
physical grid. The grid should be completely continuous and smooth.

After finite difference approximations are substituted for the derivative terms in Equations
(11), (12) and (13), the resulting iteration procedure at index ‘ij ’ requires a nine-point stencil.
Therefore, adjacent indices to ‘ij ’ are used (eight in all). For floating boundary values, this is
handled by adding an imaginary layer around each block (see computational domain in Figure
1(a)). If any portion of a boundary is floating, then the exterior layer to this portion of the
boundary is an interior layer of the adjacent block. That is, the values lying on the exterior
layer have image values which lie within the adjacent block. Hence, before each sweep through
a block, the exterior layer values are updated with their associated image values and then the
iteration is performed for all interior points of the block and all boundary values which are
prescribed as floating. For example, in Figure 1(b), when calculating values in block 1 on the
floating boundary, say at index (i, j )= (6, 3), the nine-point stencil includes values on the
additional layer i=7, j=2, 3, 4 which have image values corresponding to i=2, j=1, 2, 3 on
block 2. Once all floating boundary values are updated, their associated image values on the
adjacent block boundary are updated immediately. For example, once the values at (6, 3) are
computed for block 1, the values at (1, 2) on block 2 are also updated. This procedure is
followed for each block for multiple block regions until every block has been swept through
once. This constitutes one iteration.

The idea here is to generate a boundary conforming, macroscopically irregular, but locally
structured grid. A structured grid is one which has a definitive order. In most cases the order
comes from a premapped Cartesian grid, which leads to a physical space grid which has four
sides to every cell. When three or more of the macroscopic blocks meet at one point (at the
interface between subregions of a composite curvilinear co-ordinate system), a weak singularity
results. These points commonly arise when geometrically complicated physical regions are
involved and special attention is required for the finite difference representation of derivatives.
A weak singularity may be recognized in physical space as an interior point which is a common
vertex to a non-standard number of cells. (Standard interior grid points in two dimensions
have four immediate neighbors.) There are many kinds of weak singularities [17] but we
consider only four denoted I–IV. Type I occurs when three corner points meet, type II occurs
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at the intersection of an edge and two corners, type III at the intersection of two edges and a
corner, and type IV at three edge points. Each is illustrated in Figure 2. Type II is
indistinguishable from an interior grid point. However, since three blocks meet at this point,
a type II weak singularity must be treated as such because once this value is updated from a
sweep through one block, its image point on two other blocks must be updated.

The usual finite difference representations for derivatives break down at weak singularities.
However, if the transformed equations and difference approximations are rephrased in terms
of a local co-ordinate system, this problem can be circumvented. Hence, a local co-ordinate
system (j( , h̄) is introduced for each type of singularity. The local system is chosen so as to
orient and label only the surrounding points needed in the difference expressions. Therefore,
it specifies the image values for the points on the exterior layer directly surrounding the weak
singularity. A local co-ordinate system relative to all three blocks could be specified to aid
convergence (i.e. update the weak singularity three times per iteration) but it is not necessary.
Of course, for evolution simulations, the prognostic variables at this location should be
updated only once per iteration (using only one block) to prevent lagging or time step
violations.

An algorithm was formulated to determine automatically the grid points (and their associ-
ated blocks) required of a finite difference update of a weak singularity. Thus, given the
location and type of each weak singularity, the local co-ordinate system is automatically
determined. This saves a great deal of time when designing or modifying block structure.

Figure 1. Schematics of block structure. (a) Two blocks in the physical (x, y) domain are mapped onto the
computational (j, h) domain. An extra layer of points is included around each computational block to allow floating
boundaries to be updated with neighboring values from adjacent blocks. (b) Example of indexing and floating

boundaries for two adjacent blocks.
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Plate 1. Steady state horizontal streamfunction distribution (Svedrup) for a new global ocean circulation model using the global grid in Figure 10 with 16 layers in
the vertical. A constant annual mean wind stress is imposed at the ocean surface and an annual mean temperature and salinity distribution is specified at each grid

point. Only the velocity field is predicted. The new ocean model developed to produce these results is described in a separate paper.
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Figure 2. Diagram of the four types of weak singularities. Each singularity occurs when three blocks intersect. Type
I occurs when three corner points meet. Type II occurs at the intersection of an edge and two corners (indistinguish-
able from a regular interior point). Type III occurs when two edges and a corner join. Type IV occurs for three block

edges.

Heretofore, input data sets (boundary value locations) had to contain information describing
the local co-ordinate system for every single weak singularity. These data sets had to be created
manually and would often contain errors among the thousands of integer values required for
such a calculation.

It is advantageous to locate weak singularities over the ocean (interior grid points) rather
than at coastal values (boundary grid points). When they are not free to move around, grid
lines tend to stretch away from the fixed point yielding long, thin, and sometimes concave cells.
Badly placed weak singularities induce folding which must be avoided at all costs. Designating
weak singularities as floating points allows them to move freely, preserving the smooth

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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variation in cell areas both across a block itself and across adjacent blocks. Other advantages
include easy generation of grids with orthogonal boundaries. For simulation purposes, coastal
values are associated with unique blocks, allowing simple application of Neumann boundary
conditions.

3. DEVELOPMENT OF THE GLOBAL OCEAN GRID

Most currently existing global ocean circulation models use Cartesian grids which impose
sawtooth boundaries at land–ocean interfaces. A typical example of this kind of grid is shown
in Figure 3. This is a 4×5 resolution grid meaning 4° grid spacing in latitude and 5° grid
spacing in longitude. The 4×5 grid has been chosen for display here because it is a common
grid used for ocean simulations. The vectorized form of the Bryan–Cox 4×5 OGCM
consequently uses 3312 grid points; scalar versions skip internal land points resulting in
approximately 2300 grid values. Therefore, it is the aim of this research to show that if 3312
grid points are used, the grid points can be better distributed using a boundary conforming
grid to allow more accurate modeling of oceanographic physical phenomena.

3.1. Plane grid generation

In order to overcome the polar singularity problem the idea of working in longitude–lati-
tude space must be eliminated. The globe can be considered as a blown-up cube where a cube
is placed inside the sphere with the eight corner points fixed to the sphere. Then if this cube
were blown up like a balloon, at some point it could form a sphere. Inversely, if all values on
the sphere were projected towards its origin they would intersect the cube at unique points.
Hence, each of the six faces of the cube would represent a unique surface portion of the sphere.
The values to be mapped, of course, are coastal locations representing the boundaries of our
ocean domain. The advantage of this approach is that each face represents an equally shaped
surface area and so the North Pole (Arctic Ocean) can be modeled with the same resolution
as say the Indian Ocean. The grid can be generated on each (plane) face of the cube, then
projected back onto the sphere. Herein lie three problems. Weak singularities are predeter-
mined by the location of the corner points of the cube and subsequent orientation inside the
sphere. Secondly, but more importantly, cells of equal area generated on the plane represent
surface elements of varying area on the sphere. (Those lying at the edge of the face have
smaller respective surface elements than those lying at the center.) Finally, there is an obvious
discontinuity (for the three local co-ordinate systems) at each corner of the cube. These three
problems can be alleviated by generating the grid on the associated spherical surface patches
instead of the planes (discussed hereinafter). Nevertheless, since the governing equations for
numerically generating a grid on a plane are quite straightforward and well-documented, it is
a natural intermediate step in developing the code for surface grid generation to formulate the
block structure on the six cube faces. Consequently, grids can be generated for each face
independently, with floating boundary values for ocean–ocean interfaces but fixed values at
the cube edges (where there is an obvious discontinuity in local co-ordinate systems). Each face
has a local physical (x, y) co-ordinate system imposed with origin at the center of the face.
Digital coastal values {xb, yb} in these local (x, y) co-ordinates are created and used as the
boundary value data sets for each cube face. The block structure is shown in Figure 4. An
attempt has been made to minimize the number of blocks, but to include all important seas
and bays and flow-through regions. Blocks are designed to produce smooth grids with

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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Figure 3. Typical 4×5 longitude–latitude grid used in some global ocean calculations. This grid has a resolution of 4° and 5° in the latitudinal and longitudinal
directions, respectively. Other typical grids are 8×10 and 2×21

2.
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minimum variation in area across adjacent cells, bearing in mind the inherent smoothing
effects of the Laplacian operator and its tendency to pack grid lines around convex boundaries
and to pull them away from concave boundaries.

For each block, the Laplace equation is used to generate the grid. The equations to be
solved for x and y, subject to the boundary conditions given by the digital boundary value data
sets {xb, yb}, are therefore

g22xjj−2g12xjh+g11xhh=0, (14a)

g22yjj−2g12yjh+g11yhh=0, (14b)

where the covariant metric tensors are given by Equation (12). For all analyses and results
presented in this paper, the clustering functions P and Q in Equation (11) are set to zero.
Hence the grids presented herein are termed Laplacian grids.

The parametric (j, h) domain has unit square cells within each of the blocks. Equations (14)
are finite differenced using simple second-order approximations and solutions for x and y at
each grid point in (j, h) space are calculated using SOR. The initial guess for the grid is found
using transfinite interpolation and using a tolerance value of 10−5 ae (where ae is the Earth’s
radius): convergence is when all grid point locations change by less than 10−5 ae from one
iteration to the next. Approximately 250 iterations are required for convergence. The resulting
grids are shown in Figure 5. Notice the continuity and smoothness properties across the
floating boundaries of adjacent blocks. Also, the difference in cell areas is fairly constant
across all domains.

In Figure 5 floating boundaries are employed across adjacent blocks on the same face. If the
edges of the cube are now also permitted to float, the face shapes become distorted (from a
square) but the grid lines become continuous and smooth from one face to the next. Figure 6
illustrates this continuity and smoothness of the grid across cube edges and shows how the
grids on the cube faces are related. Due to the aforementioned discontinuities present at the
corners of the cube, the corners of each face can never be floated with complete success. Due
to the unphysical nature of the cube and the ability of the surface generation method to
overcome this hurdle, the problem of corner discontinuities is disregarded and we proceed to
numerical grid generation on a spherical surface.

3.2. Surface grid generation

The grid generation system described above is for two-dimensional Cartesian co-ordinates.
It is beneficial to consider two-dimensional curvilinear co-ordinates on the spherical surface.
The problem is to generate a two-dimensional grid on a sphere with the implicit third
dimension kept constant on the surface. The prescribed boundaries between blocks now
become bounding curves lying in physical space on the sphere. The problem is similar to that
described for the plane, but now the curvature of the spherical surface must be included in the
differential equation system which generates the grid. The block structure seen in Figure 7 is
obtained if the domains and the block structure remain unchanged (Figure 4), but all
boundary values are projected back onto the surface of the sphere. With the block structure
complete and the floating boundary and weak singularity relationships already calculated for
the cube, the only problem remaining is the derivation of the governing equations for x and
y on the surface. For a more comprehensive derivation of general surface grid generation see
Thompson and Warsi [17] or Warsi [21].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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For the sake of simplicity, we begin with the system equivalent to (7)

D2j=0, (15a)

D2h=0, (15b)

Figure 4. Block structure for the six faces of the cube. For each face, the number of the block is indicated. Blocks are
designed to produce smooth grids with minimal change in area across adjacent cells. The corners of the cube are

ascribed letters to aid in identifying common corners.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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Figure 5. Converged grids for the six plane faces of the cube. The edges of the cube have been fixed, but the floating
boundaries between blocks on the same face are smooth and are indistinguishable from interior co-ordinate lines.

where D2 is the second kind of Beltrami operator (sometimes called the Laplace–Beltrami
operator). j and h now represent space curves generated on a surface rather than a plane. Note
that for surface generation, the Beltrami operator has simply replaced the Laplacian operator,
which is a special case of the more general Beltrami operator. The Beltrami operator includes
the effects of surface curvature. Inverting dependent and independent variables yields

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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Figure 6. Converged grids for the six plane faces of the cube (pieced together to illustrate continuity and smoothness) with all ocean–ocean boundaries now permitted
to float. The corner points of each face of the cube remain fixed due to the difficulty in dealing with discontinuities in local co-ordinate systems.
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g22xjj−2g12xjh+g11xhh=n (1)R, (16a)

g22yjj−2g12yjh+g11yhh=n (2)R, (16b)

where the metrics g22, g12 and g11 now satisfy

g22=xh
2 +yh

2 +zh
2, (17a)

Figure 7. Block structure for the curved surfaces (on the sphere) equivalent to those for the cube seen in Figure 4.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)
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g12=xjxh+yjyh+zjzh, (17b)

g11=xj
2 +yj

2 +zj
2, (17c)

and n (1)=x/ae, n (2)=y/ae are the normal components to the surface, and ae is the radius of the
Earth. R= (g22g11−g12

2 )(kI+kII) where kI+kII is twice the mean curvature of the surface.
Therefore, because the surface is of the form z= f(x, y)= (a e

2−x2−y2)1/2, it can be deduced
from elementary differential geometry that kI+kII= −2/ae. Equations then become

g22xjj−2g12xjh+g11xhh= −2gx/f 2, (18a)

g22yjj−2g12yjh+g11yhh= −2gy/f 2, (18b)

since G=g22g11−g12
2 can be reduced to ga e

2/f 2, where 
g is the Jacobian given in Equation
(3). The new metrics satisfy

g22=
�

1+
x2

f 2

�
xh

2 +
�

1+
y2

f 2

�
yh

2 +
2xy
f 2 xhyh, (19a)

g12=
�

1+
x2

f 2

�
xjxh+

�
1+

y2

f 2

�
yjyh+

xy
f 2 (xjyh+xhyj), (19b)

g11=
�

1+
x2

f 2

�
xj

2 +
�

1+
y2

f 2

�
yj

2 +
2xy
f 2 xjyj, (19c)

where f\0 for all six local patches. The blocks are constructed so that for any patch, the
converged grid (for the block structure of that patch) never crosses the inherent z=0 plane. In
other words, the grids for each patch never wrap around to the opposite side of the spheroidal
projection.

The finite difference formulation for this surface grid generation case is rather more
complicated than that for the plane. The [g22]ij, [g12]ij and [g11]ij terms now involve fij, xij and
yij as well as their derivatives. fij is also a function of xij and yij and we have an additional term
on the right-hand side of Equation (18). The finite difference forms of (18) are algebraically
non-linear in the unknowns xij

n+1 and yij
n+1 due to the appearance of unknown quantities at

the next iteration level (n+1) in the coefficients. Consequently, it is advantageous to linearize
(19).

Newton’s linearization procedure (also called quasi-linearization) has the advantage of an
enhanced convergence rate. If the difference dx between two successive iterates of xij is assumed
to be small, then by setting xij

n+1=xij
n +dx one can easily linearize powers of xij

n+1. For
example, (xij

n+1)2= (xij
n)2+2xij

n+1xij
n −2(xij

n)2+dx
2:2xij

nx ij
n+1− (xij

n)2, which is linear in xij
n+1.

Applying these expansions to powers of both xij
n+1 and yij

n+1 a linear system of equations can
be solved with an inherent second-order convergence rate.

Increased convergence rate is important when a large proportion of the overall computa-
tional simulation time is spent on the numerical generation of the grid (for example, in
three-dimensional, high resolution grids or adaptive gridding schemes), but for the work
presented in this paper it is sufficient to employ a simpler, more common approach which
ensures convergence. Linearization by evaluating all coefficients at the nth level is known as
lagging and provides a consistent representation. Formally, however, it is no better than
first-order-accurate.

Using centered differences, the metrics are expressed as

[g22]ijn = [(a e
2− (yij

n)2)(xij+1
n −xij−1

n )2+ (a e
2− (xij

n)2)(yij+1
n −yij−1

n )2

+2xij
ny ij

n(xij+1
n −xij−1

n )(yij+1
n −yij−1

n )]/(2f ij
n)2, (20a)
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[g12]ijn = [(a e
2− (yij

n)2)(xi+1j
n −xi−1j

n )(xij+1
n −xij−1

n )

+ (a e
2− (xij

n)2)(yi+1j
n −yi−1j

n )(yij+1
n −yij−1

n )

+xij
ny ij

n[(xi+1j
n −xi−1j

n )(yij+1
n −yij−1

n )+ (xij+1
n −xij−1

n )(yi+1j
n −yi−1j

n )]]/(2f ij
n)2,

(20b)

[g11]ijn = [(a e
2− (yij

n)2)(xi+1j
n −xi−1j

n )2+ (a e
2− (xij

n)2)(yi+1j
n −yi−1j

n )2

+2xij
ny ij

n(xi+1j
n −xi−1j

n )(yi+1j
n −yi−1j

n )]/(2f ij
n)2, (20c)

where (f ij
n)2=a e

2− (xij
n)2− (yij

n)2. The iteration scheme which ensures convergence is then

xij
n+1=

�
(
gij

n/f ij
n)2xij

n +
1
2

[g22]ijn(xi+1j
n +xi−1j

n )+
1
2

[g11]ijn(xij+1
n +xij−1

n )

−
1
4

[g12]ijn(xi+1j+1
n +xi−1j−1

n −xi+1j−1
n −xi−1j+1

n )
n,

([g22]ijn + [g11]ijn), (21a)

yij
n+1=

�
(
gij

n/f ij
n)2yij

n +
1
2

[g22]ijn(yi+1j
n +xi−1j

n )+
1
2

[g11]ijn(yij+1
n +yij−1

n )

−
1
4

[g12]ijn(yi+1j+1
n +yi−1j−1

n −yi+1j−1
n −yi−1j+1

n )
n,

([g22]ijn + [g11]ijn), (21b)

where 
gij
n = (1/4)[(xi+1j

n −xi−1j
n )(yij+1

n −yij−1
n )− (xij+1

n −xij−1
n )(yi+1j

n −yi−1j
n )].

Each surface patch is assigned a local (x, y) co-ordinate system. Floating boundaries across
adjacent patches, as well as patch corner points, are treated easily. When updating values from
one patch to the next, the local (x, y) co-ordinate is mapped to spherical polars, then mapped
back to the local co-ordinate system on the adjacent patch. There are no discontinuities at the
corners. The converged grids are presented in Figure 8. There is complete continuity and
smoothness across floating boundaries on the same patch and across adjacent patches. The
corners points are completely hidden unless they are weak singularities. The spacing of grid
points along fixed boundaries has been chosen so that the total number of cells generated is
approximately equal to the number of cells for a 4×5 Cartesian simulation. In addition, cell
areas are fairly uniform. Overall, it is a satisfactory grid; however, one or two of its features
can be improved.

Reconsider the six patches formed by the blown-up cube. The patch edges are distorted
because of the floating boundaries. There are no constraints on using six patches of equal area.
In fact, on re-examination of Figure 8, it can be concluded that as long as the local (x, y)
values of any one patch do not extend beyond the edge of the circle (i.e. the implicit third
dimension z does not transverse the z=0 plane) the block structure for any one patch can be
completely restructured so that all islands and continents are surrounded by O-type grids.
Also, one is not forced into locating weak singularities into regions where they are obviously
not needed (such as the one present in the center of the North Pacific). Hence, the blocks and
therefore patches are entirely restructured with the following goals: shift all weak singularities
off the boundaries, that is, try to minimize the number of fixed land–ocean boundary locations
where two or more blocks meet; add more grid points to areas of more important oceano-
graphic significance; attempt to model all major bodies of water as well as flow-through
regions.

The new block structure is illustrated in Figure 9 and the resulting grids are shown in Figure
10. This grid contains almost 5700 cells. It is therefore equivalent to a Cartesian grid of closer
to 3×4 resolution. The tolerance value for convergence is kept at 10−5 ae and roughly 600
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Figure 8. Converged grids from the surface grid generation technique. The origin of each patch lies at the center of
each projection.

iterations are required to produce the grid in Figure 10. However, since the equations for
surface grid generation are more complicated than those for the plane, the expressions for xij

and yij at each iteration take longer to calculate, resulting in increased computer time:
approximately 1 min on an IBM RISC6000 560 Workstation. Since the typical spin-up time
for a global ocean calculation of 1000 years requires 100 hours of CPU time on this IBM, the
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Figure 9. New, more advanced block structure for the surface grid generation method. O-type grids are used where
possible for a number of reasons: grid lines can be added and subtracted without affecting the weak singularities and
image values for the floating boundaries; fixed boundary values are associated with a unique block (better for
simulation purposes); it allows a smoother grid (weak singularities are free to move about); better foundations for

implementation of orthogonal boundaries.
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time needed to generate the grid is negligible. So, what has been achieved for this negligible
computer time? It is instructive to conclude this section by including the equivalent projections
for the original 4×5 Cartesian longitude–latitude grid presented in Figure 3. The previously

Figure 10. The converged, higher resolution grids produced from the new block structure presented in Figure 9.
Although there seem to be more weak singularities than the grid in Figure 8 there are, in fact, approximately the same
number but they now lie over the ocean instead of at coastal locations. They are therefore further away from
boundary currents (which are more important from an oceanographic standpoint) and consequently less likely to

affect the global simulations adversely.
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mentioned advantages of the numerically generated boundary conforming grid now become
clear on comparison of Figures 10 and 11.

4. STEADY STATE HEAT CONDUCTION SIMULATION

Ultimately, grids have been developed to be implemented in the Bryan–Cox global ocean
circulation model. This requires a three-dimensional grid. In order to test the two-dimensional
grid and to determine whether the metrics and derivatives are being calculated correctly, a
simple temperature conduction problem is formulated on the grid shown in Figure 8. The grid
is generated in local (x, y) co-ordinates on the sphere surface which has a one-to-one
correspondence with global (X, Y, Z) Cartesian co-ordinates.

Consider the heat conduction equation in three-dimensional Cartesian co-ordinates

Tt= −k [TXX+TYY+TZZ ]. (22)

This has the corresponding equation on the surface of a sphere, given by

Tt= −k
� 1

a e
2 sin f

(sin fTf)f+
1

a e
2 sin2 f

Tll

n
, (23)

where l� [0, 2p ], f� [0, p ], (l, longitude and f, co-latitude measured from north pole).
However, this form of the equation is not necessary since we have from Section 2, the base
vectors relating Cartesian and curvilinear co-ordinates. Then, from (8) we have

92T= %
2

i=1

%
2

j=1

ai ·a jT
j ij j+ %

2

i=1

%
2

j=1

ai · (a j)
j iTj j, (24)

where the sum is to two because j3 is constant. Note also that a3=a3. The relationship
between global (X, Y, Z) co-ordinates on the sphere surface and local (x, y) co-ordinates for
each patch is simple. The resulting equation for the heat conduction then becomes

Tt= −
k
a2 [c1Tjj+2c2Tjh+c3Thh+c4Tj+c5Th ], (25)

where

c1=a1 ·a1=g11=g22/g, (26a)

c2=a1 ·a2=g12= −g12/g, (26b)

c3=a2 ·a2=g22=g11/g, (26c)

c4=a1 · (a1)j+a2 · (a1)h, (26d)

c5=a1 · (a2)j+a2 · (a2)h, (26e)

where g22, g12 and g11 are given by Equations (10a), (10b) and (10c), respectively.
These equations were programmed and tested for a simple rectangular region in Cartesian

(l, f) space, as shown in Figure 12. Exact theoretical solutions (derived by separation of
variables) can be obtained for the steady state problem by specifying simple boundary
conditions. Consider the domain l� [−5p/6, −p/3], f� [p/18, p/2] and the boundary condi-
tions
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Figure 11. Equivalent projection to those presented in Figures 8 and 10 of the standard Cartesian 4×5 longitude–lat-
itude grid seen in Figure 3. This projection of the standard grid illustrates wasted resolution at the North Pole and
that boundaries are not only sawtooth, but often quite inaccurate. In addition, many flow-through regions are blocked

off and islands and bays are often eliminated completely and therefore excluded in ocean simulations.

T(−5p/6, f)=0, (27a)

T(−p/3, f)=0, (27b)
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T(l, p/2)=0, (27c)

T(l, p/18)= −2 sin(p/3−2l). (27d)

The exact steady state solution to Equation (24) can be expressed as

Figure 12. Two grids used for a simple temperature conduction problem for the domain l� [−5p/6, −p/3],
f� [p/18, p/2] with boundary conditions for the middle figures given by T(l, 0)= −2 sin(p/3−2l); T=0 elsewhere.
For the bottom plots, the boundary conditions are T(l, p/18)= −2 sin(p/3−2l) elsewhere. The standard Cartesian
grid is shown top left (with longitude and latitude labels). A numerically generated surface grid for the same domain
in shown top right. The middle figures show the two grids mapped onto the sphere with a non-zero lower boundary
condition. Isotherms are plotted for various values of temperature (0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6; only some are
labeled). The lower figures show the two grids mapped to the (l, f) plane with a non-zero upper boundary condition.

For both problems the different grids yield equally good results.
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T(l, f)=2D sin(p/3−2l)
cos f

sin2 f
, (28)

and the corresponding problem in local (x, y) space has the steady state solution

T(x, y)=
D1aey

(a e
2−y2)2 [2x(a e

2−x2−y2)1/2−
3(a e
2−2x2−y2)], (29)

where

D1=
−sin2(p/18)

cos(p/18)
. (30)

Using the (M×N)= (37×33) meshes shown in Figure 12, the contours are plotted for the
associated (l, f) and (x, y) projections. Both grids yield accurate solutions and, on the
contour plots, are indistinguishable from the exact solutions. The relative (2-norm) and
absolute (1-norm) errors can be expressed as

erel=
%

M−1

i=2

%
N−1

j=2

(Tij
c −Tij

e)2

%
M−1

i=2

%
N−1

j=2

(Tij
e)2

, (31)

and

eabs=
%

M−1

i=2

%
N−1

j=2

�Tij
c −Tij

e �
(M−2)(N−2)

, (32)

where T c represents the computed value of T and T e is the exact value. For the Cartesian
(l, f) grid, the errors are erel=4.464×10−4 and eabs=4.249×10−3. For the irregular grid,
erel=3.007×10−4 and eabs=4.413×10−3. The relative errors are slightly better for the
irregular grid because co-ordinate lines are attracted to the convex top boundary. This is
typical for Laplacian grids. The gradient from this non-zero boundary is resolved just
slightly better. The exact values at the grid points, compared with corresponding grid points
on the Cartesian (l, f) grid are slightly greater. Consequently, the absolute errors for the
irregular grid are slightly higher.

If the non-zero boundary is now switched to be the lower boundary (in effect, a more
realistic physical condition), the steady state solutions can be expressed as

T(l, f)= −2D2 sin(p/3−2l)
� sin2(f)

D2(1−cos(f))2+
4 cos f

sin2 f

n
, (33)

T(x, y)=
(4D2ay− (ae+y)2)

(a e
2−y2)2 [2x(a e

2−x2−y2)1/2−
3(a e
2−2x2−y2)], (34)

where

D2= −
cos4(p/36)
cos(p/18)

. (35)

The errors for the Cartesian (l, f) grid for this problem are erel=1.280×10−4 and eabs=
5.465×10−3 and for the irregular grid, erel=1.321×10−4 and eabs=4.997×10−3. Hence,
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the absolute error for the irregular grid is slightly better for this problem and the relative
error slightly worse (which is to be expected due to the aforementioned convex boundary).
Note that the relative errors are lower for the second test case. Exact values for the second
case, throughout the grid, are generally greater compared with the first case because the
non-zero boundary is physically longer.

These simple test cases confirm that the governing equations (24) being solved in physical
and computational space are consistent with (23) in (l, f) space and that the metric and
derivative terms at each grid point (26) are being computed successfully. The irregular
structured grids and the standard Cartesian grids perform equally well for the simple
rectangular domain. One method may be slightly better given certain boundary conditions.
However, given complicated regions with complex boundary conditions, carefully generated,
irregular grids can yield significantly more accurate results.

In order to test the global grid and to check whether the temperature values are being
updated and matched correctly across successive blocks, a simple temperature distribution
T(l, f)=1−2�f �/p is specified at each coastal value. Thus, boundary temperature values
are unity at the equator and zero at the poles. The resulting steady state temperature
contours are shown in Figure 13 using the same projections seen in Figure 8. The simula-
tions produce temperature distributions and contours similar to those for a Cartesian grid
simulation and the global grid can now be employed for more complicated simulations
related to the circulation of the world’s oceans.

5. DISCUSSION

An irregular, boundary conforming, structured grid for global ocean simulations has been
generated numerically, using differential equation techniques. It was produced by employing
block structured techniques which allow many of the smaller seas and basins to be included
or eliminated with ease, and which preserve the slope continuity of the co-ordinate lines
across different ocean regions. The block structure has been coupled with an innovative
spherical patching approach which permits all areas of the global ocean to be modeled with
essentially the same resolution everywhere. The problems associated with polar singularities
have been overcome and traded for a number of floating weak singularities. This grid does
not inherently produce high resolution in polar regions where it is not needed. In fact, due
to the smoothing nature of the Laplace system, the cell areas are fairly uniform. This is
also a consequence of the extension to surface grid generation from generation on a plane.
One of the goals of this research was to produce a nearly uniform grid and leave the
manipulation of grid points and resolution to clustering functions P and Q ; i.e., a desire to
minimize area variation across neighboring cells by manipulating the block structure and
varying the location of the coastal boundary points. This way, P and Q forcing terms need
not be too complex in order to produce the ultimately desired resolution in various regions
of the ocean.

The current grid in use for simulations (Figure 8) has approximately the same number of
cells as a standard 4×5 grid. It is expected that for the two-dimensional wind-driven ocean
circulation problem (the barotropic or stream function calculation [22]) the numerical grid
will give more accurate results. In addition, with the more uniform distribution of grid
points, some of the physical oceanography characteristics such as western boundary inten-
sification [5,6] can be solved to a much higher degree than the standard Cartesian grid.
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Figure 13. Steady state isotherms for the heat conduction problem. The grid used is shown in Figure 8. The Dirichlet
boundary condition is T=1−2�f �/p (unity at the equator, zero at the poles) at all coastal locations and the initial

conditions are T=0 for all ocean values.

This is currently under investigation. It is also expected that because of the boundary
conforming nature of the grid, ocean boundary currents will be more accurately modeled
due to boundary values being prescribed at exact coastal locations (instead of to the nearest
few degrees), and to derivative boundary conditions being applied more precisely. The new,
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higher resolution grid will then be tested to determine how much accuracy is gained by
using more grid points, what significant effects are produced by moving the weak singulari-
ties off the boundaries, and whether the inclusion of the less prominent bodies of water has
an effect on the global stream function distribution.

This work represents the first step in the direction of a new global ocean simulation. The
next phase involves manipulation of the grid points using the clustering functions P and Q.
These functions P and Q essentially allow the grid points to be placed anywhere. This
implies that characteristics of the Kuroshio, Gulf Stream, East Australian, Agulhas and
Brazil currents may be evaluated with even more accuracy. Moreover, important dynamical
regions such as the equator (which acts as a wave duct) may be integrated into the grid. It
must be stressed here that with 3500 grid points it is impossible to incorporate the general
characteristics of all oceanic features into the grid, nor is it possible to resolve physics on
all scales. However, it is possible to develop different grids to address different oceanic
circulation problems.

From an ocean modeling standpoint it appears that major advances have been made in
this study, since up to now, high resolution in one region of the ocean implied high
resolution everywhere else. Although regional ocean domains have been analyzed with
irregular grids [11] global ocean domains have not, especially not with spherical surface
grids. Irregular grids generated on the (l, f) plane defeat the purpose because they produce
inherent high resolution at the poles where it is obviously not required. Another improve-
ment would be to enforce orthogonality at the boundaries to allow simple numerical appli-
cation of the various boundary conditions. Block structure can be improved by adding
blocks. Since our simulation will soon be extended to three dimensions, which will increase
the number of blocks dramatically, the focus is more towards innovative block structure.

Extension to three dimensions can be accomplished in many ways. The initial formula-
tion here will be to adopt vertical grid lines for depth and to use grid lines at a constant
depth in the horizontal. This simplifies the pressure and density calculations significantly.
More complex approaches include using different ocean outlines at specific depths, vertical
grid lines with accurate bathymetry but smoothly varying grid box depths, and what is
eventually hoped for, a full three-dimensional boundary conforming, numerically generated,
structured grid.

It would also be desirable to formulate an algorithm which could automatically produce
boundary values for the ocean domains when block structure is modified. Moreover, when
simulating standard resolutions (4×5, 2×21

2, 1×1, etc.) spacing between grid point loca-
tions along land–ocean interface boundaries should be a function of both curvature and
length. Concave boundaries generally require more grid points than convex boundaries and
as concavity increases (greater curvature) a greater number of grid points is required to
produce a smooth, accurate, acceptable, numerically generated grid. As these higher resolu-
tions are simulated, the boundaries must be modified to accommodate additional islands
and flow-through regions. Only those islands deemed to play a significant role in oceanic
circulation will be included.

The grid generation techniques employed in this study are naturally amenable to parallel
implementation. Each block can be assigned to a different processor and information from
adjacent boundaries can be passed to associated processors. Not only is it possible to make
the generation of the grid parallel, but the physical simulations of the ocean could also be
implemented on MPPs. Accordingly, it is imperative that information relating adjacent
blocks is kept as fundamental as possible. Furthermore, since the addition of blocks is
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expected to increase accuracy at the cost of computational efficiency on scalar machines,
the scalability of this method on MPPs looks promising.

A global ocean simulation with a fully three-dimensional, irregular, structured grid is
now on the horizon. Once this has been achieved, a strong possibility would be to develop
an adaptive grid to allow thermohaline circulation effects to be revealed, salinity to be
transported accurately and various boundary currents to be resolved. Our ultimate goal is
to formulate a fully coupled atmosphere–ocean model which utilizes a three-dimensional,
boundary conforming, irregular, structured, adaptive grid.

ACKNOWLEDGMENTS

We wish to acknowledge the support of the NASA EOS-IDS program and the NASA
Climate Modeling Program. We also wish to thank Inez Fung for useful discussions and
suggestions during the course of this work. The comments of the reviewers were also very
helpful.

REFERENCES

1. K. Bryan, ‘A numerical method for the study of the circulation of the world ocean’, J. Comput. Phys., 4, 347
(1969).

2. M.D. Cox, ‘A primitive equation, 3-dimensional model of the ocean’, GFDL Technical Report 1, (1984).
3. W.M. Washington and G.A. Meelh, ‘Climate sensitivity due to increased CO2: experiments with a coupled

atmosphere and ocean general circulation model’, Climate Dyn., 4, 1 (1989).
4. A.J. Semtner and R.M. Chervin, ‘Ocean general circulation from a global eddy resolving model’, J. Geophys. Res.,

97, 5493 (1992).
5. H. Stommel and A.B. Arons, ‘On the abyssal circulation of the world ocean—I. Stationary planetary flow

patterns on a sphere’, Deep Sea Res., 6, 140 (1960).
6. H. Stommel and A.B. Arons, ‘On the abyssal circulation of the world ocean—II. An idealized model of the

circulation pattern and amplitude in oceanic basins, Deep Sea Res., 6, 217 (1960).
7. A.F. Blumberg and G.L. Mellor, ‘A description of a three-dimensional coastal ocean circulation model’, in R.

Heaps (ed.), Three Dimensional Coastal Ocean Models, American Geophysical Union, Washington DC, 1990, p.
1.

8. Y.F. Xie, G.L. Browning and C.G. Chesshire, ‘The composite grid method for the reduced system for the
shallow-water equations’, SIAM J. Sci. Comput., submitted (1993).

9. M. Ciment, ‘Stable difference schemes with uneven mesh spacings’, Math. Comput., 25, 219 (1971).
10. S.P. Spekreijse, J.W. Boerstoel, P.L. Vitagliano and J.L. Kuyvenhoven, ‘Domain modeling and grid generation for

multi-block structured grids with application to aerodynamic and hydrodynamic configurations’, in R.E. Smith
(ed.), Software Systems for Surface Modeling and Grid Generation, NASA-CP-3143, 207 (1992).

11. D.B. Haidvogel, A. Beckmann and K.S. Hedstrom, ‘Dynamical simulations of filament formation and evolution
in the coastal transition zone’, J. Geophys. Res., 96, 15017 (1991).

12. J. Adams, R. Garcia, B. Gross, J. Hack, D.B. Haidvogel and V. Pizzo, ‘Application of multigrid software in the
atmospheric sciences’, Mon. Weather Re6., 120, 1447 (1991).

13. I. Fukumori, J. Benveniste, C. Wunsch and D.B. Haidvogel, ‘Assimilation of sea surface topography into an ocean
circulation model using a steady-state smoother’, J. Phys. Oceanogr., 23, 1831 (1993).

14. D.W. Barnette, ‘Progress report on high-performance high-resolution simulations of coastal and basin-scale ocean
simulations’, Parallel Computational Sciences Department, Sandia National Laboratories, (1994).

15. K. Bryan and M.D. Cox, ‘An approximate equation of state for numerical models of ocean circulation’, J. Phys.
Oceanogr., 2, 510 (1972).

16. A.J. Semtner, ‘An oceanic general circulation model with bottom topography’, Numerical Simulation of Weather
and Climate Technical Report 9, Department of Meteorology, UCLA (1974).

17. J.F. Thompson, Z.U.A. Warsi and C.W. Mastin, Numerical Grid Generation: Foundations and Applications,
North-Holland, New York, 1985.

18. Z.U.A. Warsi, ‘Basic differential models for coordinate generation’, J.F. Thompson (ed.), Numerical Grid
Generation, North-Holland, New York, 1982, p. 41.

19. J.F. Thompson, F.C. Thames and C.W. Mastin, ‘Automatic numerical generation of body-fitted curvilinear
coordinate systems for fields containing any number of arbitrary two-dimensional bodies’, J. Comput. Phys., 15,
299 (1974).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)



W.S. RUSSELL AND P.R. EISEMAN788

20. J.F. Thompson and Z.U.A. Warsi, ‘Boundary-fitted coordinate systems for numerical solution of partial
differential equations—a review’, J. Comput. Phys. 47, 1 (1982).

21. Z.U.A. Warsi, ‘A note on the mathematical formulation of the problem of numerical coordinate generation’, Q.
Appl. Math., 41, 221 (1983).

22. H. Stommel, ‘The westward intensification of wind-driven ocean currents’, Trans.: Am. Geophys. Union, 29, 202
(1948).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 761–788 (1998)


